A point mutation within the replicase gene differentially affects coronavirus genome versus minigenome replication.

نویسندگان

  • Carmen Galán
  • Luis Enjuanes
  • Fernando Almazán
چکیده

During the construction of the transmissible gastroenteritis virus (TGEV) full-length cDNA clone, a point mutation at position 637 that was present in the defective minigenome DI-C was maintained as a genetic marker. Sequence analysis of the recovered viruses showed a reversion at this position to the original virus sequence. The effect of point mutations at nucleotide 637 was analyzed by reverse genetics using a TGEV full-length cDNA clone and cDNAs from TGEV-derived minigenomes. The replacement of nucleotide 637 of TGEV genome by a T, as in the DI-C sequence, or an A severely affected virus recovery from the cDNA, yielding mutant viruses with low titers and small plaques compared to those of the wild type. In contrast, T or A at position 637 was required for minigenome rescue in trans by the helper virus. No relationship between these observations and RNA secondary-structure predictions was found, indicating that mutations at nucleotide 637 most likely had an effect at the protein level. Nucleotide 637 occupies the second codon position at amino acid 108 of the pp1a polyprotein. This position is predicted to map in the N-terminal polyprotein papain-like proteinase (PLP-1) cleavage site at the p9/p87 junction. Replacement of G-637 by A, which causes a drastic amino acid change (Gly to Asp) at position 108, affected PLP-1-mediated cleavage in vitro. A correlation was found between predicted cleaving and noncleaving mutations and efficient virus rescue from cDNA and minigenome amplification, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication.

Expression of the exceptionally large RNA genomes of CoVs involves multiple regulatory mechanisms, including extensive proteolytic processing of the large replicase polyproteins, pp1a and pp1ab, by two types of cysteine proteases: the chymotrypsin-like main protease and papain-like accessory proteases (PLpros). Here, we characterized the proteolytic processing of the human coronavirus 229E (HCo...

متن کامل

Proofreading-Deficient Coronaviruses Adapt for Increased Fitness over Long-Term Passage without Reversion of Exoribonuclease-Inactivating Mutations

The coronavirus (CoV) RNA genome is the largest among the single-stranded positive-sense RNA viruses. CoVs encode a proofreading 3'-to-5' exoribonuclease within nonstructural protein 14 (nsp14-ExoN) that is responsible for CoV high-fidelity replication. Alanine substitution of ExoN catalytic residues [ExoN(-)] in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and murine hep...

متن کامل

Replication and packaging of transmissible gastroenteritis coronavirus-derived synthetic minigenomes.

The sequences involved in the replication and packaging of transmissible gastroenteritis virus (TGEV) RNA have been studied. The structure of a TGEV defective interfering RNA of 9.7 kb (DI-C) was described previously (A. Mendez, C. Smerdou, A. Izeta, F. Gebauer, and L. Enjuanes, Virology 217: 495-507, 1996), and a cDNA with the information to encode DI-C RNA was cloned under the control of the ...

متن کامل

Dissection of amino-terminal functional domains of murine coronavirus nonstructural protein 3.

UNLABELLED Coronaviruses, the largest RNA viruses, have a complex program of RNA synthesis that entails genome replication and transcription of subgenomic mRNAs. RNA synthesis by the prototype coronavirus mouse hepatitis virus (MHV) is carried out by a replicase-transcriptase composed of 16 nonstructural protein (nsp) subunits. Among these, nsp3 is the largest and the first to be inserted into ...

متن کامل

Genetic interactions between an essential 3' cis-acting RNA pseudoknot, replicase gene products, and the extreme 3' end of the mouse coronavirus genome.

The upstream end of the 3' untranslated region (UTR) of the mouse hepatitis virus genome contains two essential and overlapping RNA secondary structures, a bulged stem-loop and a pseudoknot, which have been proposed to be elements of a molecular switch that is critical for viral RNA synthesis. It has previously been shown that a particular six-base insertion in loop 1 of the pseudoknot is extre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 79 24  شماره 

صفحات  -

تاریخ انتشار 2005